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A calculation of the paramagnetic current suggests how infinite conductivity can 
lead to perfect diamagnetism in soft superconductors in a stationary state. 

1. INTRODUCTION 

An unsolved question of the theory of soft superconductors regards the 
relationship between perfect conductivity and perfect diamagnetism. Both 
properties are required for the phenomenological descriptions of supercon- 
ductors in a stationary state. They can be shown to be formally independent 
properties and yet, as stated by Kuper (1978), "the ways they manifest 
themselves are so closely related that one can hardly believe that they are 
really independent." Indeed Evans and Rickayzen (1964).showed that in 
any microscopic theory with an electron scattering mechanism perfect 
diamagnetism (B = 0) is necessary and sufficient for perfect conductivity 
(E = 0). The converse, namely, that E = 0 implies B = 0, has not so far been 
proved. If, for instance, one considers the Ginzburg-Landau theory, then 
B = 0 and E = 0 are consequences of two long-range order quantities: the 
phase 0 of the wave function and the chemical potential /t related, for a 
system in equilibrium, by 

00 
a--7 = - 2 ,/h ( 1 )  
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Although equation (1) implies that in steady state conditions ~ must be 
position independent, from which infinite conductivity follows, the converse 
does not necessarily lead to perfect diamagnetism, which requires V0 = 
const. 

The purpose of this work is to show that the argument can be turned 
around and that indeed perfect diamagnetism requires perfect conductivity. 
This statement is based on a calculation, given in Section 2, of the static 
paramagnetic response of type-I superconductors proportional to the prod- 
uct of a static scalar potential G(r) and a static magnetic vector potential 
A(r). Section 3 contains the conclusions. 

2. THE STATIC PARAMAGNETIC RESPONSE 
PROPORTIONAL TO G(r) and A(r). 

Let us consider a superconducting slab in the x - y  plane and let us 
choose arbitrarily a( - Q), the Fourier transform of A(r), in the y direction. 
By taking Q along x the transversality condition is satisfied. In what follows 
we use the notations of Rickayzen (1959, 1965). 

The effects of A(r) and G(r) on the superconductor can be studied by 
adding to the free Hamiltonian the perturbations (Rickayzen, 1959, 1965): 

H, = - 2 a a ( -  Q )~ky[ l( k, -- Q )('Y*k-QOYkO -- "Y*kl/k-Q, ) 

- p ( k , -  e)(Y*k-Q07*k,-  Yk-Q,Yk0)] +H.C. 

and 

n2 = G ( -  Qt) E [m( k ' -  Q')('y*k_Q.O'Y*kl -.t- "[k-Q'l'YkO ) 
k 

+ ,  + Q.,)] + H.C. 

/-/1 represents the usual magnetic interaction term. For simplicity we neglect 
band structure effects entirely. In addition, Q' is chosen along the z 
direction and a = eh/2mc.  

The paramagnetic current operator is 

eh 
J (Q")  = ~ Y'~ (2k + Q")[  l( k, Q")(  7*k + Q"O/ko- 7*klYk +Q'q ) 

k 

- p Yk+Q"IY o)] + H . C .  (2) 
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with Q" = Q + Q'. The diamagnetic part of the current does not contribute 
to the total current for the geometry chosen. 

In the derivation of the equations of motion we keep only terms which 
contribute to (2) linearly in the product a ( - Q ) G ( -  Q'). Since only the 
Fourier components Q and Q' are assumed to be present for A(r) and G(r), 
respectively, we need only the expectation values of products of ~, operators 
which differ by momentum Q to first order in a ( - Q )  and by momentum 
Q' to first order in G ( -  Q'). A self-consistent solution for the )'k+Q3'k pairs 
is known and can be found, for instance, in Rickayzen (1959, 1965). 

It is represented by 

7*k + QO't*kl = - - 2 a a ( -  Q )k~,(1 - fk - fk +Q ) P( k, Q )vkl( Q ) 

7k + Q17ko = 2aa( - Q) k~,(1 - fk -- fk+o)P( k, Q)v-kt(Q) 

Y'k+ OOTkO = 2aa( - Q ) k y ( f  k - fk+e) l (k ,  Q)Ek l (Q)  

"Y*k:Yk+el = -- 2aa(-- Q )ky( f~ - fk +e )l( k, Q ) ~[  I( Q ) (3) 

Similarly, a solution for the 3'k+O'3'k pairs can be obtained 

"Y*k+Q'O'YkO -~" 2kxG(-  Q')l( k, O') F.~l( Q')( fk - fk+O') 

"~*k +Q'O'Y*kl = -- 2kxG(-  Q') P( k, O')Pk l( a , ) ( 1 -  fk -- fk+o') 

7k+O'1"tkO = 2kxG( - Q') p( k, Q')vkl( Q')(l - fk --/k+Q') 

3'*k,~'k + Q', = -- 2 k x G ( -  Q') l (k ,  Q')E' - : (Q')( fk  - fk+Q') 

where 

and 

Vk(Q) = E k + Ek+ O 

(4) 

F.k(Q)=Ek+Q--Ek 

by using (3) and (4) one can derive the equations of motion for the u pairs 
appearing in (2). The calculations are lengthy but similar to those performed 
by Miller in connection with the frequency-dependent Hall effect in normal 
and superconducting metals (Miller, 1961). For the sake of completeness we 
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give the final results 

"t*k +Q"O'tkO = - 2 a G ( -  O ' ) a ( -  Q )kyE~t(  Q '') 

• [m(k  + Q ' , -  Q')(1 - fk+Q"- fk+Q")P( k + Q', Q)r[I+Q,(Q) 

+ m(k  + Q", - O')(1 - [k - [k+O)P( k, a)rk- l (O) 

-- n( k + O', - O')( fk +o" -- fk +q" )l( k + Q', Q ) Ek2Q'( Q ) 

+ n(k  + Q " , - Q ' ) ( f k - f k + q ) l ( k , Q ) P . [ ~ ( O ) ]  

r*k+e,,or*k~ = - 2 a a ( -  Q')a( - Q )k.,y; ~( Q '' ) 

x [ -  m(k  + Q', - Q ' ) ( A + e ' -  fk+e")t( k + Q', Q)PJa+e'(Q) 

+ m(k  + Q " , -  Q')(fk - fg+q)l(k,  Q)~[ I (Q)  

- n(k + a " , -  O')(1 - A  - / , + o ) P (  k, Q)~"~'(Q) 

- n(k  + O ' , -  a')(1--fk+Q"--fk+y") 
x 1,(k + Q', Q)~;IQ,(Q)] (5) 

~'k + e",Yko = 2 a a ( -  O ' ) a ( -  Q)k.,Y-[l(O "') 

x [ - m(k  + Q', - Q')( /k+Q"-/ ,+Q,.) l(k + Q', O)P,~.~q.(O) 

+ m(k  + Q", - O')( fk  - fk+Q)l( k, Q ) ~ ; I ( Q )  

- ,, (k + Q', - Q')(1 - L + e , -  L+e, , )?(  k + Q', Q)~';)Q,(Q) 

• - n(k  + Q " , -  O ' ) ( 1 -  f k - - f k+q)P(  k ,Q)vk ' (Q)]  

"/*kF/k +O", = 2 a G ( -  Q ' ) a ( -  Q )kyE[. X( O "') 

x [ m ( k  + Q", - Q ' ) ( 1 -  f/, - f / ,+o)p( k, Q)v-~(Q) 

+ n(k  + Q", - Q')(f~ - / ~ + e ) t ( k ,  Q)~;~(O)  

p-I + m ( k  + Q ' , - Q ' ) ( 1 - f k + o ' - f k + Q " ) P ( k  +Q' ,Q)  k+o'(Q) 

- n(k  + Q ' , -  Q' ) ( fk+q"-  fk+O")l( k + Q', Q) ~?k+IQ'(Q)] 



Type-1 Superconductors 421 

From (2) and (5) we obtain 

Jv(Q") = --e2h2 Y'.k~k~G( - O')a(-  Q)L(e, ek+O., ek+Q,, ) 
" m 2 c  k " " 

with 

L(e, ek+Q,, ek+Q,, ) 

=21(k,Q")[- m(k+Q"'-Q')P(k'Q)(1-fk-fk+O)Ek(Q- ")Pk(Q) 

n(k + Q", - Q')l(k, Q)(fk - fk+Q) 

[~k(O")Ek(O) 

(6) 

m(k Q, -Q' )p(k+Q' ,Q)(1- fk+Q,  

Ek(Q )~'k+Q'(Q) 
-A+o,,) 

+ n(k + Q', - Q')l(k + Q', Q)(fk+Q'- fk+Q") 
t t  Ek(Q )Ek+Q,(Q) 

-2p(k ,Q")  
m(k + Q', - Q')l(k + Q', Q)(A+ e"- A+ e") 

~'k(Q )Ek+Q'(Q) 

m(k + Q", - Q')l(k, Q)(A - A+e) 

~'k(Q )ek(Q) 

+ n(k + Q', - Q')p(k + Q', Q)(1 - fk+Q'- fk+Q") 

pk(Q")~'k+Q,(Q) 

n (k + Q", - Q')p(k, Q)(1 - fk - fk+Q) ] 
+ pk(Q,,)~,k(Q ) ] (7) 

3. B = 0 F R O M E = 0  

So far no specific form for G(r) has been assumed. It is unnecessary. In 
fact, since the balancing of the various forms acting on the superelectrons is 
automatically taken into account by the chemical potential #5 (Anderson 
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et al., 1965), we take G(r)oc/~. For superconductors, however, stationarity 
requires that ~ be constant far from boundaries. Thus under the assumed 
conditions, 

G(- o') (8) 

These substitutions transform (6) into the usual expression for the para- 
magnetic current of a soft superconductor (Kuper, 1964; Rickayzen, 1959, 
1965; Tinkham, 1975). This follows from (2) when Q ' =  0 and can be 
directly seen by taking the limit Q ' o  0 in (6) and (7), as required by (8). 
Equation (7) yields 

P2(k,Q)(1-f  -./2) 12(k,Q)(f -f2) 
L ( e ,  e l , e2)  = + (9) 

where 1 and 2 substitute the indices k and k + Q, respectively. 
By integrating over Q', (6) gives for continuous k 

e2h 2 ~ a ( - Q )  f d , k G k ~ , t ( ~ , ~ ,  (10) 

If we now make the approximation 

/~kx /~kx 1 

E 2 + E 1 E 2 - E 1 2 
(11) 

which is equivalent to taking 

2mA 
Q < - -  (12) h2kF 

where A is the energy gap, equation (10) reduces to the usual paramagnetic 
current (Kuper, 1968; Rickayzen, 1959, 1965; Tinkham, 1975). Equation 
(12) obviously preserves superconductivity. The sum of paramagnetic and 
diamagnetic currents then generates the Meissner effect in a well-known 
way. In fact, when (11) is verified L(e, e l, e2) becomes 

p 2 ( k ' Q ) ( 1 - f x - f 2 )  i 2 ( k ' Q ) ( f l - f 2 )  (13) 
L (e, q ,  e 2 ) = E2 + Ex + E2 _ E1 

If now A = 0 as in normal metals, the first term in (13) vanishes while the 
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second term exactly cancels the diamagnetic current. When A ~ 0, the first 
term no longer vanishes, the diamagnetic current is no longer compensated 
and the total current leads to the Meissner effect. We therefore reach the 
following conclusion: while O is responsible for the stiffening of the wave 
function and, through A, for the modulation of (13), ~ not only accounts for 
infinite conductivity, but as shown above, also for the paramagnetic current. 
It is then the superposition of the two types of order in the total current 
which results in perfect diamagnetism. In this sense, therefore, perfect 
diamagnetism requires perfect conductivity. 
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